Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response.

Identifieur interne : 000069 ( Main/Exploration ); précédent : 000068; suivant : 000070

Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response.

Auteurs : Fan-Chen Huang [Taïwan] ; Hau-Hsuan Hwang [Taïwan]

Source :

RBID : pubmed:32138311

Abstract

Agrobacterium tumefaciens uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The Arabidopsis reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The rtnlb4 mutants were recalcitrant to A. tumefaciens infection, but overexpression of RTNLB4 in transgenic plants resulted in hypersusceptibility to A. tumefaciens transformation, which suggests the involvement of RTNLB4 in A. tumefaciens infection. The expression of defense-related genes, including FRK1, PR1, WRKY22, and WRKY29, were less induced in RTNLB4 overexpression (O/E) transgenic plants after A. tumefaciens elf18 peptide treatment. Pretreatment with elf18 peptide decreased Agrobacterium-mediated transient expression efficiency more in wild-type seedlings than RTNLB4 O/E transgenic plants, which suggests that the induced defense responses in RTNLB4 O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly, A. tumefaciens VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in RTNLB4 O/E transgenic seedlings. Furthermore, the VirB2 peptides induced FRK1, WRKY22, and WRKY29 gene expression in wild-type seedlings but not efr-1 and bak1 mutants. The induced defense-related gene expression was lower in RTNLB4 O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the A. tumefaciens infection process.

DOI: 10.3390/ijms21051722
PubMed: 32138311
PubMed Central: PMC7084338


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>Arabidopsis</i>
RETICULON-LIKE4 (RTNLB4) Protein Participates in
<i>Agrobacterium</i>
Infection and VirB2 Peptide-Induced Plant Defense Response.</title>
<author>
<name sortKey="Huang, Fan Chen" sort="Huang, Fan Chen" uniqKey="Huang F" first="Fan-Chen" last="Huang">Fan-Chen Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Hau Hsuan" sort="Hwang, Hau Hsuan" uniqKey="Hwang H" first="Hau-Hsuan" last="Hwang">Hau-Hsuan Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32138311</idno>
<idno type="pmid">32138311</idno>
<idno type="doi">10.3390/ijms21051722</idno>
<idno type="pmc">PMC7084338</idno>
<idno type="wicri:Area/Main/Corpus">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000058</idno>
<idno type="wicri:Area/Main/Curation">000058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000058</idno>
<idno type="wicri:Area/Main/Exploration">000058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>Arabidopsis</i>
RETICULON-LIKE4 (RTNLB4) Protein Participates in
<i>Agrobacterium</i>
Infection and VirB2 Peptide-Induced Plant Defense Response.</title>
<author>
<name sortKey="Huang, Fan Chen" sort="Huang, Fan Chen" uniqKey="Huang F" first="Fan-Chen" last="Huang">Fan-Chen Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hwang, Hau Hsuan" sort="Hwang, Hau Hsuan" uniqKey="Hwang H" first="Hau-Hsuan" last="Hwang">Hau-Hsuan Hwang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402</wicri:regionArea>
<wicri:noRegion>Taichung 402</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Agrobacterium tumefaciens</i>
uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The
<i>Arabidopsis</i>
reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The
<i>rtnlb4</i>
mutants were recalcitrant to
<i>A. tumefaciens</i>
infection, but overexpression of
<i>RTNLB4</i>
in transgenic plants resulted in hypersusceptibility to
<i>A. tumefaciens</i>
transformation, which suggests the involvement of RTNLB4 in
<i>A. tumefaciens</i>
infection. The expression of defense-related genes, including
<i>FRK1</i>
,
<i>PR1</i>
,
<i>WRKY22</i>
, and
<i>WRKY29</i>
, were less induced in
<i>RTNLB4</i>
overexpression (O/E) transgenic plants after
<i>A. tumefaciens</i>
elf18 peptide treatment. Pretreatment with elf18 peptide decreased
<i>Agrobacterium</i>
-mediated transient expression efficiency more in wild-type seedlings than
<i>RTNLB4</i>
O/E transgenic plants, which suggests that the induced defense responses in
<i>RTNLB4</i>
O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly,
<i>A. tumefaciens</i>
VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in
<i>RTNLB4</i>
O/E transgenic seedlings. Furthermore, the VirB2 peptides induced
<i>FRK1</i>
,
<i>WRKY22</i>
, and
<i>WRKY29</i>
gene expression in wild-type seedlings but not
<i>efr-1</i>
and
<i>bak1</i>
mutants. The induced defense-related gene expression was lower in
<i>RTNLB4</i>
O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the
<i>A. tumefaciens</i>
infection process.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32138311</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>Arabidopsis</i>
RETICULON-LIKE4 (RTNLB4) Protein Participates in
<i>Agrobacterium</i>
Infection and VirB2 Peptide-Induced Plant Defense Response.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1722</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21051722</ELocationID>
<Abstract>
<AbstractText>
<i>Agrobacterium tumefaciens</i>
uses the type IV secretion system, which consists of VirB1-B11 and VirD4 proteins, to deliver effectors into plant cells. The effectors manipulate plant proteins to assist in T-DNA transfer, integration, and expression in plant cells. The
<i>Arabidopsis</i>
reticulon-like (RTNLB) proteins are located in the endoplasmic reticulum and are involved in endomembrane trafficking in plant cells. The
<i>rtnlb4</i>
mutants were recalcitrant to
<i>A. tumefaciens</i>
infection, but overexpression of
<i>RTNLB4</i>
in transgenic plants resulted in hypersusceptibility to
<i>A. tumefaciens</i>
transformation, which suggests the involvement of RTNLB4 in
<i>A. tumefaciens</i>
infection. The expression of defense-related genes, including
<i>FRK1</i>
,
<i>PR1</i>
,
<i>WRKY22</i>
, and
<i>WRKY29</i>
, were less induced in
<i>RTNLB4</i>
overexpression (O/E) transgenic plants after
<i>A. tumefaciens</i>
elf18 peptide treatment. Pretreatment with elf18 peptide decreased
<i>Agrobacterium</i>
-mediated transient expression efficiency more in wild-type seedlings than
<i>RTNLB4</i>
O/E transgenic plants, which suggests that the induced defense responses in
<i>RTNLB4</i>
O/E transgenic plants might be affected after bacterial elicitor treatments. Similarly,
<i>A. tumefaciens</i>
VirB2 peptide pretreatment reduced transient T-DNA expression in wild-type seedlings to a greater extent than in
<i>RTNLB4</i>
O/E transgenic seedlings. Furthermore, the VirB2 peptides induced
<i>FRK1</i>
,
<i>WRKY22</i>
, and
<i>WRKY29</i>
gene expression in wild-type seedlings but not
<i>efr-1</i>
and
<i>bak1</i>
mutants. The induced defense-related gene expression was lower in
<i>RTNLB4</i>
O/E transgenic plants than wild-type seedlings after VirB2 peptide treatment. These data suggest that RTNLB4 may participate in elf18 and VirB2 peptide-induced defense responses and may therefore affect the
<i>A. tumefaciens</i>
infection process.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Fan-Chen</ForeName>
<Initials>FC</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hwang</LastName>
<ForeName>Hau-Hsuan</ForeName>
<Initials>HH</Initials>
<Identifier Source="ORCID">0000-0001-9132-0242</Identifier>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 402, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOST 105-2313-B-005-008; MOST 107-2321-B-005-009</GrantID>
<Agency>Ministry of Science and Technology, Taiwan</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Agrobacterium</Keyword>
<Keyword MajorTopicYN="N">RTNLB</Keyword>
<Keyword MajorTopicYN="N">VirB2</Keyword>
<Keyword MajorTopicYN="N">plant defense response</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32138311</ArticleId>
<ArticleId IdType="pii">ijms21051722</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21051722</ArticleId>
<ArticleId IdType="pmc">PMC7084338</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2006 May 5;125(3):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16678099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):979-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2017 Aug 4;55:257-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28617654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 30;268(1):69-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2384174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Sep;179(18):5835-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9294442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2018 Feb;93(4):592-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 May 28;110(22):9166-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23674687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 May;187(10):3486-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2018;418:233-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29808338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2003 Apr;13(4):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2016 May 9;37(3):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27117666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):169-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23248273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Aug;15(4):431-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2017 Nov 27;51:195-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28853920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Feb;66(4):584-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3148-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 2;431(7004):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15343337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2982-2987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28242680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 May 2;193(3):521-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2017 Oct 20;15:e0186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31068763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 19;318(5849):453-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Nov 05;16(11):26582-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2008;631:161-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18792688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jul;182(13):3705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Aug 7;10(8):1026-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28698057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 Apr;58(4):284-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26345282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20424177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2008 Jan;9(1):94-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 27;9(6):e101142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24971727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 19;6:1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10723-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Aug 1;301(5633):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 May;180(10):2711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Dec;40:34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28735164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Oct;183(20):5813-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11566978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:245-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17626179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jul 24;581(18):3356-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17604024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 23;7(1):323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28336924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2015;53:379-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26243727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2017 Mar 22;3(3):e1601528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28345032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1002046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 May;31(5):576-586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29264953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jul;5(7):1445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3017694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Jan;8(1):e22611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23221759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Jul 11;13(13):4777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4022773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Nov;163(3):1459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24019427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EcoSal Plus. 2016 Oct;7(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27735785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 1977 Nov;23(11):1554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">922605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2018;418:261-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30182197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Jan 15;495(3):2105-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29229386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(3):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 May;28(5):1144-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27081184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2014 Jun 18;10:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2440-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2661-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Jun;3(6):423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 6;274(32):22548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Mar;21(3):944-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19318610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Mar;9(3):317-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2004 Jul;3(7):675-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15060130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 Feb 24;19(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29495267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Mar 18;7(3):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20227663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 18;4:519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 15;428(6984):764-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15085136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2013 Jan;14(1):58-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22947164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Mar 2;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29498790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Sep;23(9):3374-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Jan;184(1):327-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Mar;31(3):311-322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29090631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jul 2;20(13):3596-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jul 24;3:169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22837762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Sep;11(5):677-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20696005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2003 Jun 6;223(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12798992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Aug;168(4):1563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Feb 28;415(6875):977-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2013;57(6-8):467-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166430</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Huang, Fan Chen" sort="Huang, Fan Chen" uniqKey="Huang F" first="Fan-Chen" last="Huang">Fan-Chen Huang</name>
</noRegion>
<name sortKey="Huang, Fan Chen" sort="Huang, Fan Chen" uniqKey="Huang F" first="Fan-Chen" last="Huang">Fan-Chen Huang</name>
<name sortKey="Hwang, Hau Hsuan" sort="Hwang, Hau Hsuan" uniqKey="Hwang H" first="Hau-Hsuan" last="Hwang">Hau-Hsuan Hwang</name>
<name sortKey="Hwang, Hau Hsuan" sort="Hwang, Hau Hsuan" uniqKey="Hwang H" first="Hau-Hsuan" last="Hwang">Hau-Hsuan Hwang</name>
<name sortKey="Hwang, Hau Hsuan" sort="Hwang, Hau Hsuan" uniqKey="Hwang H" first="Hau-Hsuan" last="Hwang">Hau-Hsuan Hwang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32138311
   |texte=   Arabidopsis RETICULON-LIKE4 (RTNLB4) Protein Participates in Agrobacterium Infection and VirB2 Peptide-Induced Plant Defense Response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32138311" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024